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Wall roughness produces a downward shift of the mean streamwise velocity profile
in the log region, known as the roughness function. The dependence of the roughness
function on the height and arrangement of roughness elements has been confirmed
in several studies where regular rough walls were analysed; less attention has been
paid to non-regular rough walls. Here, a numerical analysis of turbulent flows over
irregularly shaped rough walls is performed, clearly identifying the importance of a
parameter, called the effective slope (ES) of the wall corrugations, in characterizing
the geometry of non-smooth irregular walls. The effective slope proves to be one of
the fundamental geometric parameters for scaling the roughness function. Specifically,
for a moderate range of roughness heights, both in the transitionally and in the fully
rough regime, ES appears to scale the roughness function for a wide range of irregular
rough geometric configurations. The effective slope determines the relative importance
of friction drag and pressure drag. For ES ∼ 0.15 we find that the friction contribution
to the total wall stress is nearly in balance with the pressure-drag contribution. This
value separates the region where the roughness function �U+ = f (ES) is linear from
that where a smooth nonlinear behaviour is observed. In the cases investigated, value
ES ∼ 0.15 also separates the transitionally rough regime from the fully rough regime.

1. Introduction
Turbulent flows of engineering, geophysical and environmental interest are

frequently bounded by solid rough walls. Although in nature the wall roughness
geometry is characterized by an irregular shape, with randomly distributed elements
having different height, most experimental and numerical analyses of rough-wall
turbulent flows have been focused on ordered arrangements of roughness elements.
This choice has been mainly driven by the need to understand the modifications of the
turbulent flow by the series of indentations in the walls. The use of irregular roughness
also makes it difficult to identify universal geometrical parameters to characterize the
shape of the walls. An additional problem is the difficulty in obtaining detailed
measurements of hydrodynamic quantities very close to a rough wall or performing
numerical simulations in the presence of complex boundary shapes.

One of the main effects of a rough wall on the turbulent flow is known to consist of
the downward shift of the streamwise mean velocity profile in the log region, compared
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to a smooth wall, corresponding to an increase of the drag coefficient CD = τs/0.5ρU 2
0

with τs the total wall stress, ρ the fluid density and U0 the bulk velocity of the flow.
This shift is quantified with the roughness function �U+ (hereafter the superscript +

denotes variables made non-dimensional with inner variables u∗=
√

τs/ρ and ν/u∗,
where ν is the kinematic viscosity). For surfaces roughened with individual elements
of identical shape and dimensions, �U+ was found to depend on the height k+ of
the elements in wall units and on other geometric features, such as their density
(the number of elements per unit area) and shape. The importance of the density of
roughness elements was clearly identified by Colebrook & White (1937), who found
that the number of roughness elements protruding from the viscous boundary layer
affects the overlying flow. Shockling, Allen & Smits (2006) characterized sand grain
roughness using the distance between the higher elements, thus partially accounting
for their density. In order to quantify the density of roughness elements, Schlichting
(1936) defined the solidity λ= Fr/F as the ratio between the total projected frontal
roughness area (Fr ) and the wall-parallel projected area (F ). For regularly roughened
surfaces, the ratio ks/k between the equivalent sand roughness ks and the height k of
the elements was found to correlate very well with the solidity. To account for the
shape of the roughness elements, which is not taken in consideration in the solidity,
for regular roughness with identical elements, Sigal & Danberg (1990) defined the
roughness parameter:

Λs =
F

Fr

(
Af

As

)−1.6

(1.1)

where Af is the frontal area of one roughness element and As its windward wetted
surface area. In the Sigal–Danberg parameter, the ratio F/Fr accounts for the
roughness element density while the ratio Af /As depends on the shape of the element.
The power −1.6 follows from an empirical best-fitting procedure.

When considering non-regular rough walls, the difficulties in identifying geometric
parameters able to fully characterize a surface are intensified. Parameters like λ
and Λs , can be calculated in a simple way when the rough wall is made up of
individual roughness elements distributed over an otherwise flat surface, while several
ambiguities arise in their calculation when completely rough surfaces are considered.
In such cases individual roughness elements cannot be identified and even the reference
level from where to calculate the heights is not clearly defined. An extension of the
Sigal–Danberg parameter Λs to fully irregular rough walls was proposed by van Rij,
Belnap & Ligrani (2002), who replaced the ratio Af /As of (1.1) with Fr/Fs , where Fr

and Fs are respectively the total frontal area and the total windward wetted surface
area, for all the roughness elements over a given surface F . This modified Sigal–
Danberg parameter, however, loses the ability to account for the single roughness
element shape, which was the principal advantage of the original parameter when
compared to the solidity.

In the present paper a parameter ES is defined which accounts for the local slope of
the wall roughness (a formal definition will be given in the next section), to characterize
the shape of irregular rough walls. The main objective of the present analysis is to
check whether a direct correlation can be established, for irregular two-dimensional
rough walls, between the roughness function �U+ and the new parameter accounting
for the slope of the wall roughness. Leonardi et al. (2007) discussed the transition
between k- and d-type behaviours of rough walls (Perry, Schofield & Joubert 1969),
which may be related to the relative contribution of friction drag and form drag. Based
on that analysis, we also investigate the relationship between these contributions and
the new parameter ES.
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2. The numerical experiments and discussion of the results
As in recent numerical studies of wall roughness (see e.g. Leonardi et al. 2003)

we carry out resolved large-eddy simulations (LES) (also named quasi-DNS after
Spalart et al. 1997) of turbulent channel flows with rough walls. These definitions
hold for simulations where grid resolution is fine enough to directly resolve most of
the near-wall turbulent structures.

The non-dimensional filtered Navier–Stokes equations for an incompressible flow
field are:

∂ui

∂t
+

∂uiuj

∂xj

− 1

Re

∂2ui

∂xj∂xj

+
∂p

∂xi

+
∂τij

∂xj

+ Π δi1 = 0 (i = 1, . . . , 3) (2.1)

where the overbar indicates filtered quantities, xi is the coordinate along the ith-axis
(with the streamwise direction aligned with the axis x1), ui is the velocity component
in the ith-direction, t is time, p is the pressure, τij = uiuj − uiuj is the turbulent
subgrid-scale stress (SGS) tensor, δij is the Kronecker symbol and Re = u∗δ/ν is the
Reynolds number based on the velocity scale u∗ and the channel half-height δ. The
last term is the non-dimensional imposed pressure gradient driving the flow. For a
rough wall, the streamwise component of the total wall stress is obtained as

τs,d =
1

A

∫
A

[
−μ

∂us,d

∂n
t · s + pd n · s

]
dA (2.2)

where the index d indicates dimensional quantities, A is the wall surface, us is the
tangential velocity component at the wall, t and n are respectively the tangential and
normal vector to the wall surface element dA, and s is the streamwise direction vector,
and the velocity scale u∗ =

√
τs,d/ρ is defined accounting for both the frictional and

pressure contributions to the wall stress in the streamwise direction.
The integral momentum balance shows that, under statistically steady-state

conditions, the force associated with the driving pressure gradient must be in balance
with the overall drag, given by the streamwise component of the wall stress τs,d as
2δΠd = 2τs,d , where Πd is the dimensional imposed pressure gradient. Since in (2.1)
we use δ and u∗ as length and velocity scales, the non-dimensional driving pressure
gradient is Π = −1.

The SGS stress tensor τij of (2.1) is modelled using the dynamic mixed model
(DMM) of Zang, Street & Koseff (1993). The governing equations are integrated
using the fractional step algorithm of Zang, Street & Koseff (1994) in conjunction
with a second-order-accurate finite-volume method (the details of the numerical
method are reported in Lipari & Napoli 2008). The algorithm is explicit in time, and
the second-order Adams–Bashforth scheme is used for the convective, diffusive and
turbulent terms. The Poisson equation for the pressure is solved using a line-SOR
technique in conjunction with a V-cycle multi-grid method to speed convergence.
Validation tests were carried out for turbulent channel flow over smooth wall
by comparing our first- and second-order statistics with the reference data of
Moser, Kim & Mansour (1999). Very good agreement was found between our
LES results and the DNS reference data (De Marchis 2006). In order to check
the performance of the model on curvilinear grids, further tests were carried out
considering a large-amplitude wavy wall, for which DNS data are available (Maas &
Schumann 1996). Again, a very satisfying agreement with the reference data was
achieved.

In the rough wall simulations both the upper and lower walls are corrugated in
such a way as to maintain the average half-height of the channel equal to δ, and the
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(a) First series (b) Second series (c) Third series

Case n r+ Lw ES Case n r+ Lw ES Case n r+ Lw ES

C1 4 2.37 2πδ 0.042 C8 1 19.75 2πδ 0.050 C13 4 28.44 1.1πδ 0.550
C2 4 5.53 2πδ 0.057 C9 2 19.75 2πδ 0.063 C14 5 19.75 πδ 0.760
C3 4 7.90 2πδ 0.084 C10 3 19.75 2πδ 0.149
C4 4 9.48 2πδ 0.101 C11 4 19.75 2πδ 0.206
C5 4 13.83 2πδ 0.145 C12 5 19.75 2πδ 0.380
C6 4 19.75 2πδ 0.206
C7 4 28.44 2πδ 0.300

Table 1. Roughness parameters for the three sets of numerical experiments. Note that C11

the same as C6.

Reynolds number Re = u∗δ/ν is set equal to 395. Since we impose a constant driving
pressure gradient, the effect of the wall roughness consists of a reduction of the flow
rate and thus of the bulk velocity within the channel.

The irregular geometry of the solid boundaries is one-dimensional and generated
by superposition of different sinusoidal functions with random amplitude and having
maximum wavelength Lw:

r(x1) =

n∑
i=1

An sin

(
2nπx1

Lw

)
, (2.3)

where r(x1) is the distance of the wall from a plane reference surface, in the x3 = z

direction, n is the number of sinusoidal functions, An is their amplitude. The length
of the domain L is set equal to 4πδ, while the channel width is set equal to π.

Three series of configurations are considered: in the first (cases C1–C7, table 1),
the maximum wavelength Lw is kept constant, four sinusoidal functions are used and
different values of the non-dimensional mean amplitude

r+ =
u∗

ν

1

L

∫
L

|r(x1)| dx1

of the roughness elements are considered. To illustrate a typical wall geometry of the
first series, figure 1(a) shows case C6 (r+ = 19.75). Note that the geometry of the upper
wall and lower wall is different, due to the random generation of the amplitudes An.

In the second series (cases C8–C12, table 1), r+ = 19.75 and the maximum wavelength
is 2πδ, whereas the number of sinusoidal functions ranges from 1 to 5. Case C8,
obtained using only one sinusoidal function (n= 1), is the typical wavy wall geometry
studied in a number of papers (see for instance Armenio & Piomelli 2000 and
references therein). Figure 1(b) shows the profiles of the bottom-surface roughness
profiles for cases C8 to C12. Note that the increase in the number of sinusoidal
functions results in an increase of small-scale irregularities over the wall.

In the third series (cases C13 and C14, table 1), four sinusoidal functions are used
and the maximum wavelength is changed to further increase the density of roughness
corrugations compared to the first two series. In C13 the mean amplitude is r+ =28.44,
the wavelength is set to 1.1πδ and the domain length is 4.4πδ (the lower wavelength
is the difference with case C7); in C14 the geometric features of case C12 (n= 5 and
r+ = 19.75) are maintained and the wavelength is reduced to πδ.

The simulations were carried out using curvilinear boundary-fitted grids, of 256 ×
64 × 64 hexahedral cells in the streamwise, spanwise and wall-normal directions,
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Figure 1. (a) Layout of a portion (0 � x1 � π) of the turbulent channel domain for case C6

(four sinusoidal functions, non-dimensional mean amplitude r+ = 19.75). (b) Bottom surface
roughness profiles of cases C8 to C12 (mean amplitude r+ = 19.75): C8, �; C9, ◦; C10, �; C11,
�; C12, ×.

respectively. The cells are uniformly distributed in the streamwise and spanwise
directions (with a grid spacing approximately equal to 20 wall units in both directions).
In the wall-normal direction the grid cells are clustered near the walls to maintain the
distance of the first grid point from the wall below one wall unit. Periodic boundary
conditions are imposed in both the streamwise and spanwise directions, while no-slip
conditions are imposed at the solid walls. Although the variation of the height of the
wall corrugations introduces a lack of homogeneity in the streamwise direction, we
can still consider the flow to be statistically homogeneous above the roughness layer
on the x1, x2 planes and thus average the velocity fields over those planes. Since in
general the vertical distribution of the grid points does not coincide with the planes of
homogeneity, to calculate the statistics the instantaneous values are first interpolated
at fixed distances from the channel midplane and then averaged in the planes of
statistical homogeneity. Averaging is also performed in time using a window of 20
δ/u∗ and taking advantage of the top/bottom symmetry. To preserve accuracy, third-
order splines are used for spatial interpolation of the velocity fields. The statistics are
calculated for the fluid region within the extreme peaks of the bottom and top walls.

The wide range of irregular walls considered herein gave different values of the
roughness functions, while maintaining the logarithmic profile in the flow interior.
The non-dimensional profiles of the streamwise mean velocity are shown in semi-
logarithmic plots in figure 2(a) for the first set of simulations and in figure 2(b) for
the other sets. The non-dimensional wall-normal coordinate z+ is measured from the
horizontal flat plane on which the sinusoidal functions are superimposed and the
velocity profiles start from different values of the non-dimensional wall-normal
coordinate, corresponding to the wall-normal location of the maximum peak of
the wall corrugation. In figure 2(a, b) we also plot the equivalent plane-channel flow
velocity profile at Reτ =395 and the straight line dividing the transitional and the
fully rough regimes. In figure 2(a) both transitionally and fully rough behaviours
are present: cases C1 to C5, being above the line, are in the transitional regime,
while cases C6 and C7 are in the fully rough regime. For a given number of
wave modes, the downward shift of the log-law region increases with r+, which
is a well-known effect of roughness. Figure 2(b) shows that, when the level of
roughness is varied by increasing the number of wavy modes, a substantial increase
of the roughness function �U+ is obtained although r+ remains constant. Also in
this case, both transitionally rough (cases C8 and C9) and fully rough (cases C10



390 E. Napoli, V. Armenio and M. De Marchis

∗∗∗
∗∗∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

xxxx x x x x x x x

+++ + + + + + + + +x x x x x x x x x x x x x x x x

∗
∗

∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

++++
++++++ + + + + + +

z+

�u′�

100 200 300

4

8

12

16

20
(a)

z+

100 200 300

(b)

Figure 2. Wall-normal profiles of the non-dimensional mean streamwise velocity u+ for the
three sets of simulations. (a) First series: Smooth wall: thin solid line. Limit of the fully rough
wall (〈u+〉 = (1/κ) log z+/k+

s + 8.5 with k+
s =70): bold solid line. C1: ∗. C2: ◦. C3: ×. C4: �.

C5: �. C6: �. C7: +. (b) Second and third series: Smooth wall: thin solid line. Limit of the
fully rough wall: bold solid line. C8: �. C9: ◦. C10: �. C11: �. C12: ∗. C13: ×. C14: +.
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Figure 3. Dependence of the roughness function �U+ on the effective slope of the wall
corrugations, ◦, cases C1 − C7; �, cases C8 − C12; 	, cases C13 − C14.

to C14) behaviours are present. Here the roughness function �U+ is not directly
related to the mean amplitude r+, but rather to the variation of the density of
roughness corrugations. The results of the third series of simulations (figure 2b)
show that, beyond a certain level of density of wall corrugations, the roughness
function starts to decrease, a well-known effect of sheltering of one element by the
other.

To account for both the height and density of the roughness corrugations, a
parameter, called the effective slope, is introduced:

ES =
1

L

∫
L

∣∣∣∣ ∂r

∂x1

∣∣∣∣ dx1. (2.4)

It can be shown that ES is twice the solidity, and is easier to use in the general cases
of randomly distributed wall roughness.

In figure 3 the roughness function �U+ is plotted against the effective slope ES for
all cases considered herein. Here the roughness functions were obtained by calculating
the mean offsets of the velocity profiles, in the range z+ =100 − 200, from the smooth
wall profile. In the first series of simulations (C1 to C7) the effective slope grows
from 0.05 to 0.3 with the amplitude of wall corrugations (see table 1), while in
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the second series (C8 to C12) it increases with the number of sinusoidal functions,
from 0.042 to 0.38. In the third series the largest values of ES are attained, 0.55 in
case C13 and 0.76 in case C14. A clear dependence of the roughness function �U+

on the effective slope of the wall corrugations can be easily identified, irrespective
of the specific geometry (number of sinusoidal functions, mean amplitude of the
wall corrugations and maximum wavelength of the sinusoidal functions) of the cases
investigated. Specifically �U+ increases linearly up to about ES ∼ 0.15, follows a
nonlinear curve for larger values of ES up to a maximum for ES ∼ 0.55 and then
weakly decreases. This behaviour is in agreement with the literature results for regular
roughness geometry (as reported in Jimenez 2004), which showed the decrease of the
roughness function beyond a certain value of solidity.

Note that the decrease of �U+ beyond the maximum value obtained in our
simulations is much smoother than in the literature; this behaviour is probably
because we study irregular roughness geometry, making the mutual sheltering effect
of the single corrugations less pronounced. Moreover, previous studies considering
wall roughness with regular distributions of identical elements identified the maximum
of the roughness function for solidity λ ∼ 0.15 (see figure 1a in Jimenez 2004) which
corresponds to ES ∼ 0.3. As can be seen in figure 3, we found the maximum in �U+

for values of ES near 0.55, corresponding to λ∼ 0.275, well beyond the peak value
obtained for regularly roughened walls with two-dimensional spanwise obstacles. This
is probably because, when the roughness is randomly distributed, with an ensemble
of peaks of different heights and with a range of densities along the streamwise
direction, a selective behaviour may take place, which makes the projected areas of
very dense and small elements less important than those of the largest elements. In
this case, although the small elements contribute to the value of ES, they do not alter
the main characteristics of the flow and a further increase of �U+ is observed for a
wider range of values of ES. Clearly this effect cannot occur for rough walls made
of regularly distributed identical elements. Finally, note that the slope of the curve
in figure 3 strongly decreases for ES � 0.15, which in the cases investigated herein
corresponds to the start of the fully rough regime (C6, C7 and C10 to C14).

It is not straightforward to make a direct quantitative comparison with literature
data, since we analyse random corrugations that cannot be reduced to a series of
well-defined elements, whereas literature studies are mainly concerned with regular
roughness made up of identical elements; this makes it difficult to unequivocally find a
roughness length scale comparable with that of regular roughness, namely the height
of the elements. Leonardi, Orlandi & Antonia (2007) considered walls roughened with
two-dimensional square bars placed at regular streamwise intervals; for given values
of the pitch to height ratio w/k, corresponding to ES = 2k/(w + k), they found a
dependence of the roughness function on the Reynolds number and thus on the height
k+ of the roughness elements in wall units, which is a geometric parameter without a
direct counterpart in our geometries. If we use 2r+ as length scale (the mean trough-
to-crest distance) and compare our results with the data of Leonardi et al. (2007) we
find a value of the roughness function of about 30% less than theirs. On the other
hand, analogous comparison with the experimental measurements of Krogstad &
Antonia (1999), who used circular rods to regularly roughen the wall, results in an
underprediction of the roughness function obtained with ES =0.55 of about 5%.
These differences, besides being due to the irregularity of roughness in this paper,
depend on the fact that these authors found a clear dependence of the roughness
function on the height k+ of the roughness elements in wall units), which has no
direct counterpart in our geometries. The mean amplitude r+ is conceptually different
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Figure 4. Detail of the velocity fields averaged in time and in the spanwise direction downwind
of roughness peaks for cases C1 (a), C8 (b), C5 (c) and C10 (d). Some streamlines are plotted
for C5 and C10 to highlight the occurrence of separation downwind of the roughness peaks.

from k+, which depends only on the peaks of the roughness elements, whereas r+

contains a wide range of local corrugation heights.
In our simulations the range of variation of the mean amplitude r+ is small and this

explains the relatively weak dependence of �U+ on r+. Nevertheless, this dependence
is within the range predicted in the literature. Consider for instance, case C10, having
a mean amplitude 1.42 times larger than C5 and an almost identical value of ES.
Assuming the ratio between the equivalent sand roughnesses ks to be equal to the
ratio between the mean amplitudes, the difference in the roughness function can be
estimated as �U+

10 − �U+
5 = (1/κ) log(k+

s10
/k+

s5
) = (1/κ) log 1.42 ≈ 0.9 where κ is the

von Kármán constant (for a discussion see Jimenez 2004). This value is very close to
the difference obtained in the simulations, which is roughly equal to one unit.

Finally, the analysis of figure 3 shows that cases C1 and C8 have approximately the
same ES, being characterized by strong geometric differences (C8 is a small-amplitude
wavy wall, C1 is a 4-mode wave with mean amplitude one order of magnitude smaller
than C8), and exhibit equivalent behaviour with respect to the roughness function.
This can be attributed to the effective slope of the wall producing in both cases
non-separated flows near the wall, thus having equivalent effects on the flow field, as
shown in figure 4(a, b) where a sketch of the time- and spanwise-averaged velocity
fields downwind of roughness peaks are plotted for cases C1 and C8. On the other
hand, case C5 (four wave modes and r+ = 13.83) and case C10 (three wave modes
and r+ = 19.50) have similar ES and behave similarly with respect to the roughness
function. This analogous behaviour can be explained by the fact that in both cases
localized flow separation occurs behind the crests, as depicted in figure 4(c, d). These
results clearly indicate that the effective slope ES is one of the parameters well
suited to characterize the geometry of non-regular wall roughness for the evaluation
of the roughness function �U+. Specifically, our results corroborate and extend the
literature findings on the role of parameters such as the solidity λ and the Sigal–
Danberg parameter.

To give a physical explanation of the dependence of the roughness function �U+

on the parameter ES, we discuss the results of our simulations in the light of the
recent findings of Leonardi et al. (2007) on the relative importance of the friction and
pressure contributions to the total drag in regular rough geometry. In figure 5
the friction-drag coefficient Cf = Df /ρu∗2 and the pressure-drag coefficient
Cp = Dp/ρu∗2 are plotted against ES for cases C1 to C14. Df and Dp are the
streamwise components of the friction and pressure stress, respectively. Note that
since our simulations were carried out with constant imposed pressure gradient,
the momentum balance in the streamwise direction gives Cf + Cp = |Π | =1. A clear
dependence of the friction- and pressure-drag coefficients on the parameter ES is easily
identified. The increase of the effective slope in cases C1 to C7 results in a progressive
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Figure 5. Dependence of the pressure drag Cp (filled symbols) and of the friction drag Cf

(open symbols) on the effective slope of the wall corrogations. ◦, cases C1 to C7; �, C8 to C12;
�, C13 and C14.

reduction of the friction contribution to the drag and in the corresponding growth
of the pressure drag. This is due again to the occurrence of more local separation
effects downstream of the local wall peaks as the slope of roughness corrugations
increases. Analogously, in cases C8 to C12, the effective slope grows with the increase
of the number of wave-modes, since the mean height remains unchanged from case
to case. Correspondingly, the relative contribution of the pressure drag increases due,
again, to the increase of local downward separation behind the local peaks. Note
that the data collapse onto single curves for the three series of simulations, thus
demonstrating that the effective slope of the wall corrugations is an appropriate
geometric parameters to describe the behaviour of rough walls, independently of the
mean height and distribution of the roughness elements.

Analysis of figure 5 indicates that, for the geometric configurations analysed herein,
a value of the effective slope of about ES = 0.12 identifies the condition of equality of
the friction- and pressure-drag contributions, while for higher values the pressure drag
dominates over the friction contribution to the total drag. Note that this value is very
close to the value ES ∼ 0.15 beyond which a fully-rough behaviour was observed in
figure 2(a, b) , together with a change in the slope of the curve �U+ = f (ES). Although
our results indicate that the value of ES ∼ 0.12−0.15 at which friction- and pressure-
drag contributions are in balance determines the change of the slope of the curve
�U+ = f (ES) and the change of regime from transitional to rough, further studies
are required to identify a general threshold value of the effective slope for different
values of the Reynolds number and for general three-dimensional corrugations.

3. Conclusions
In this paper we have investigated the behaviour of the roughness function �U+ in

a turbulent channel flow with irregular rough walls obtained by superposition of si-
nusoidal functions of different amplitude and wavelength. Numerical quasi-DNS sim-
ulations showed that ES is one of the geometric parameters able to represent the effect
of a rough wall on the roughness function. Our study demonstrates that rough walls
constructed in very different ways, characterized by different mean heights and spatial
distribution of the roughness corrugations, exhibit very similar behaviour if they have
similar values of the effective slope. The results of the present study agree with previous
studies of regular distributions of roughness elements on the role of geometrical
parameters such as the solidity, while extending them to the general case of irregular
rough walls. The peak value of the roughness function �U+ appears shifted toward
values of the effective slope larger than the equivalent value available in literature
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for regular rough walls. This is attributed to the effect of irregularity, that produces a
selective behaviour of the roughness corrugations with respect to the increase of drag.

It was found that the effective slope determines the relative importance of friction
drag and pressure drag. The increase of ES and thus of the corrugation density gives
a reduction of the friction drag and a corresponding growth of the pressure drag,
irrespective of other geometric features of the rough wall. Specifically, our study shows
a value ES ∼ 0.12–0.15 such that pressure drag and friction drag contribute equally
to the total drag. In our study, this value has been found to determine the change
of regime from transitionally to fully rough and the change of the slope of the curve
�U+ = f (ES), from linear behaviour (ES � 0.15) to smooth nonlinear behaviour
ES � 0.15. Additional studies are required to extend our findings, considering different
values of the Reynolds number and three-dimensional irregular roughness.
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